Neutron Spectrum & Cross sections

K.S. Rajan

Professor, School of Chemical & Biotechnology
SASTRA University

Table of Contents

1 QUIZ	3
	3
1 2 Answers	3

1 Quiz

1.1 Questions

- 1. Determine the change in lethargy when the neutron energy is changed from 100 keV to 40 keV
- 2. Classify neutron energy spectrum into different regions.
- 3. Which one of the following represents the range of continuum region?
- (a) $0.001 < E_n < 25 \text{ MeV}$

(b) $0.1 < E_n < 25 \text{ MeV}$

(c) $0.01 < E_n < 25 \text{ MeV}$

- (d) $1 \le E_n \le 25 \text{ MeV}$
- 4. Write the relationship between cross section and neutron energy in thermal or low-energy region.
- 5. Write the formula to determine average cross section across a range of neutron energies.
- 6. Which among the following fuel categories has the highest relative neutron flux per unit litharge at low neutron energies?
- (a) metals
- (b) metal oxides
- (c) metal carbides

1.2 Answers

1. Change in lethargy is given by

$$\Delta u = u_1 - u_2 = ln\left(\frac{E_2}{E_1}\right) = ln\left(\frac{100}{40}\right) = 0.916$$

- 2. (i) Low energy region; (ii) resonance region & (iii) continuum region
- $3. (c) 0.01 \le E_n \le 25 \text{ MeV}$
- 4. $\sigma \alpha \frac{1}{\sqrt{E}}$
- 5. $\sigma = \frac{\int \sigma(E)\phi(E)dE}{\int \phi(E)dE}$
- 6. (b) metal oxides